Figure 14. Gait Cycle curves and Sine Curves

(1)Both legs'

(2)Front leg's gait cycle and a sine curve

(3)Opposite leg's gait cycle and a sine curve

Figure 15. Legs' gait cycle - Pendulum

Legs' gait cycle - Pendulum

$F=-m g \sin \theta$
Interior angle made with Femur and Perpendicular: $\quad \theta(\mathrm{rad})$
Bottom point: 0
Deviation from point 0 on arc: $x(m)$ right direction is positive
Gravity acceleration: $g\left[\mathrm{~m} / \mathrm{s}^{2}\right]$
m: weight of right leg or left leg

When x is positive, the power which $m g \sin \theta$ works is directed to the left hand, therefore F is designated as minus.

Right leg's pendulum $\quad F_{1}=-m_{1} g \sin \theta$

Left leg's pendulum $\quad F_{2}=-m_{2} g \sin \theta$

Figure 16. Kangaroo's hopping
A kangaroo hops with two legs that move simultaneously. Its hopping has two phases., i.e., the stance phase and swing phase. Both legs' moves are synchronized.

Stance Phase

1. Initial contact

Both feet touch ground.
Cyclical running (1)

2. Loading response

Forward movement of whole body, while both feet keep touching ground and both legs are at stance phase

Cyclical running (2)

Cyclical running (3)

Cyclical running (4)

Cyclical running (5)

